
Int. J. Man-Machine Studies (1976) 8, 567-596

The computer as a tutorial laboratory:
the Stanford BIP project

AVRON BARR, MARIAN BEARD AND RICHARD C. ATKINSON
Institute for Mathematical Studies in the Social Sciences,
Stanford University, Stanford, California 94305, U.S.A.

(Received 18 February 1976 and in revised form 5 June 1976)

The BAsic Instructional Program (BIP) was developed to investigate tutorial modes
of interaction in computer-assisted instruction. BIP is an interactive problem-
solving laboratory that offers tutorial assistance to students solving introductory
programming problems in the BAsic language. This paper describes how the problem
presentation sequence is individualized based on a representation of the structure of
the curriculum and a model of the student's state of knowledge. The nature of the
student-BIP interaction is captured in an annotated student dialogue illustrating a
typical session.

1. Background
Computers are now used in a wide variety of applications in education and training,
including curriculum presentation and drill, information retrieval, and simulation of
complex systems. The research reported here deals with an additional application" the
use of the computer as a problem-solving laboratory. In the computer-based laboratory
environment, the student attempts to solve problems on-line with the guidance of the
instructional system. The system plays the role of interactive tutor, giving hints, correcting
errors and evaluating progress. The full power of the computer as calculator and
simulator is available to the student, providing the motivational effects of learning by
working on real problems with adequate supervision at the student's convenience and
at his own pace. The main focus of our work in the Complex Instructional Strategies
research group at the Institute for Mathematical Studies in the Social Sciences at Stan-
ford University is the individualization of the sequence of instruction presented in
computer-assisted instruction (CAI). This paper describes a computer-based program-
ming laboratory, which we have used in our research and which we believe is an excellent
example of an effective CAI program.

The computer-based tutor design has been arrived at by several research groups using
different approaches to Artificial Intelligence applications in CAI. Carbonell, Collins,
and others (Carbonell & Collins, 1973; Collins, Passafiume, Gould & Carbonell, 1973)
developed the GEO-SCHOLAR system to illustrate natural language inquiry of a large
data base. However, the GEO-SCHOLAR system is really an elaborate tutor with
sophisticated decision algorithms directing "mixed-initiative" dialogues: the instructional
system can ask questions as well as answer them. Their recent work explores tutorial
schemes for instruction in more procedural subject domains (e.g. an on-line editing
system) where simply asking and answering questions is insufficient (Grignetti, Gould,
Hausmann, Bell, Harris & Passafiume, 1974).

Danielson & Nievergelt's (1975) work at the University of Illinois PLATO system
concentrates on automated problem-solving assistance. They use a top-down problem

567

568 A. BARR, M. BEARD AND R. C. ATKINSON

solution graph to direct a tutorial dialogue about how to solve a programming problem.
Although their system does not build a model of the student from which future instruc-
tional decisions could be made, the problem solution graph scheme leads directly to a
useful representation of the curriculum. The student model could be updated as the
student traverses the graph in his attempt to find a solution; this is a procedure we will
incorporate in our work on BIP's REP subsystem (described in section 4) in the coming
year.

Perhaps the most impressive and "knowledgeable" computer-based tutor yet devised
is Brown's SOPHIE system (Brown, Burton & Bell, 1974) which grew out of research
on modes of querying a simulation-based knowledge representation. Although curriculum
guidance decisions are minimized (the system teaches only one skill, troubleshooting a
complicated electronic circuit), SOPHIE's knowledge of troubleshooting strategy and
logical deductions from known measurements fosters "learning by imitation" in a natural
and exciting environment, the essence of tutorial style.

Research at IMSSS has approached the computer tutor model by successive refine-
ment of more traditional approaches to CAI in logic and computer programming.
The logic and more advanced set theory courses now running in fully tutorial mode
were first conceived of as applications of automated theorem proving techniques for
checking students' proofs (Goldberg, 1973). Current work in the advanced set theory
course that we offer at Stanford involves informal, natural language student-machine
dialogues using computer-generated audio to discuss, develop and refine complex
mathematical proofs in an informal manner (Smith, Graves, Blaine & Marinov, 1975;
Sanders, Benbassat & Smith, 1976).

In 1970 the Institute's Complex Instructional Strategies group developed a large CAI
curriculum for a new course to teach the AID programming language (1968) at the
introductory undergraduate level. This course has been used in colleges and junior col-
leges as a successful introduction to computer programming (Friend, 1973; Beard,
Lorton, Searle & Atkinson, 1973). However, it is a linear "frame-oriented" CAI program
and cannot provide individualized instruction during the problem-solving activity itself.
After working through lesson segments on such topics as variables, output, and expres-
sions, the student is assigned a problem to solve in AID. He must then leave the instruc-
tional program, call up a separate AID interpreter, perform the required programming
task, and return to the instructional program with an answer. As he develops his program
directly with AID, his only source of assistance is the minimally informative error
messages provided by the interpreter.

Furthermore, the AID course was found to be an inadequate vehicle for our investi-
gations of individualization of instruction because of the linear organization of its
curriculum. The course consists of a large set of ordered lessons, reviews, and tests,
and a student's progress from one segment to the next was determined by his score
on the previous segment. A high score would lead to an "extra credit" lesson on the
same concepts, while a low scorewould be followed by a review lesson. It became clear
that this decision scheme, based on total lesson scores, was reasonably effective in pro-
viding instruction and programming practice, but since it dealt with rather large seg-
ments of the curriculum, the individualization of the course of study was minimal.
All students covered more or less the same concepts in the same order, with slight differ-
ences in the amount of review. We were interested in developing a system whose deci-
sions would be based on a more specifically defined goal: the mastery of particular

STANFORD BIP PROJECT 569

programming skills rather than achievement of a criterion lesson score. For this reason,
we undertook development of a course with a new and different instructional design,
based in part on earlier work by Lorton & Slimick (1969).

The BASIC Instructional Program (BIP) is a stand-alone, fully self-contained course
in BASIC programming at the high school/college level. BIP was conceived and designed
as a short course in programming for people who desired an informal but useful hands-on
introduction to the use of the computer in problem solving. The programming language
(BAsIc) and the curriculum chosen for the course are appropriate for students who have
no previous experience with computers, and who wish to become familiar with them,
but do not intend to become serious computer programmers. For example, BIP has
been used effectively both as a supplement to a "computer literacy" course and as a
requirement in a business administration curriculum. This is not to say, however, that
the ideas that have gone into the BIP system would be lost in a formal course for future
programmers. A similar interative programming laboratory using a more appropriate
language such as ALGOL or PASCAL and a modified curriculum could be a major
addition to a first undergraduate course on structured programming.

Over 300 undergraduates at DeAnza College, the University of San Francisco, and
Stanford have taken the course and contributed to its design. BIP's major features are
as follows.

(a) A monitored BASIC interpreter, written in SAIL (Van Lehn, 1973) by the IMSSS
staff, which allows the instructional system maximal knowledge about student
e r ro r s .

(b) A curriculum consisting of approximately 100 programming problems at widely
varying levels of difficulty.

(c) A HINT system, which gives both graphic and textual aid in problem solving.
(d) Individualized task selection based on a Curriculum Information Network,

which describes the problems in terms of fundamental skills. Problems are selected
using a model of the student's acquisition of the skills required by his earlier
programming problems.

(e) A complete Student Manual that includes a general introduction to programming
and detailed reference information on BASIC statements and structures.

Figure 1 is a schematic representation of the tutorial programming laboratory environ-
ment supported by BIP, described fully by Barr, Beard & Atkinson (1975). Section 4
presents a brief description of the system including some new features not described in
the earlier report. Section 5 is an annotated dialogue illustrating the system's features
and the student-BIP interaction.

The new work reported here is primarily concerned with BIP's optimized problem
selection by means of an internal representation of the curriculum structure, the Cur-
riculum Information Network (CIN). The use of network models to describe curriculum
structure is an important development in tutorial CAI. The CIN enables the instructional
program to "know" the subject matter it purports to teach, and meaningfully to model
the student's progress along the lines of his developing skills, instead of the curriculum
elements (problems) themselves. The next section discusses the current state of curriculum
design for CAI courseware, the sources and context from which the CIN concept
emerged, and our implementation of BIP's CIN. Section 3 discusses our use of the
network to optimize task selection, and describes the algorithms currently in use. Section

570 A. BARR, M. BEARD AND R. C. ATKINSON

6 describes an experiment comparing these algorithms with a fixed curriculum path for
their effects on student performance. Section 7 outlines some of our future plans.

CURRICULUM ~ CURRICULUM ~ tasks p r o g / I"- - - ~ - - r a m - ~ INTERPRETER
INFORMATION DRIVER
NEIWORK Syntax Checking
Hints, Subtasks,_ Problem Solving
Rips - - - - -7 Help Logical Error
Tasks ~ Task Selection ~ Student Model] Detection

I '
I /

Skills J Post Task I -- ~ Execution Interview I ~ "~'=Y I

Model Solutions Solution Checker %1= Debugging Aids

FIG. 1. A schematic representation of the tutorial programming laboratory.

2. Curriculum representation in CAI
In much of the current research in tutorial CAI, generative CAI, and mixed-initiative
natural language dialogues, the central problem is the "representation" of the subject
domain, which is also a fundamental concern of research in cognitive psychology and
artificial intelligence. The goal is to provide a representation of the subject matter that
is sufficient for individualized tutoring and also has a realistic and manageable computer
implementation. A consideration of the different "representational poles" in vogue in
CAI will give a perspective on the capabilities of the Curriculum Information Network
representation.

The most common style of CAI courseware now being written consists of an auto-
mated presentation of a curriculum written by a human author. The author, knowledge-
able in the subject matter, has in mind a clear organization of the interrelations among
the specific "facts" of that subject, an implicit understanding of the dependency of
one concept on another, and a plan for the development of new skills. His personal
organization of the discrete elements results in a structured curriculum, consisting of
lessons or problems presented in a sequence he Considers to be optimal in some sense for
his model of his students. This structure is like that of a textbook, established in advance
of interaction with the student, but superior to a textbook in that the author builds
branching decisions into the program, providing some degree of individualization. His
subdivisions of the curriculum and the branching criteria he specifies constitute the
author's representation of the subject matter in this traditional CAI style.

At the opposite pole of explicit curriculum structure are "generative" CAI programs,
which do not use an author-written curriculum at all. This type of course generates
problem statements and solutions by retrieving information from a complete, internal
representation of the facts in the subject domain, usually stored in a semantic network.
Question-and-answer construction algorithms are used to present the material in the
data base to the student. These algorithms also embody heuristics for what to teach
when, depending on some model of the student's state of knowledge. All the "facts",
dependencies, and logical interrelations that form the author's knowledge of the subject
must be embodied within the generative program. Thus, Carbonell's well-known
SCHOLAR program (Carbonell, 1970) "knows" the names and populations of the

STANFORD BIP PROJECT 571

major cities of Brazil, and is clever enough to answer "What is the largest city in Brazil ?"
without "knowing" that fact explicitly. (See also Koffman & Blount (1975), for a review
of generative CAI and an example of a generative computer based course in program-
ming.) The advantages for individualization of generative CAI over fixed-branching
courseware are considerable: the generative program is specifically designed to provide
instruction and[or information in precisely the areas needed by the student. All decisions
about what material to present can be made dynamically, based on the student's progress
rather than on a predetermined sequence of material. Ideally, the program has access
to the same information that makes the human author a subject matter expert, and this
information can be made available to the student much more flexibly than is possible
in author-generated CA1. In particular, the model of the student's state of knowledge
is based on the structure of the subject itself (e.g. the student has covered the material
on rivers in Brazil) rather than on the structure of the author's curriculum design as
reflected in his branching specifications, which are typically triggered by correct/wrong
response counters.

In a very simply structured question-and-answer curriculum, a counter-based decision
policy can adequately reflect student progress. For instance, if the program asks questions
about rivers in Brazil until the student answers two correctly in a row, then there is
indeed some confidence about the student's knowledge of that subject. This is exactly
the type of course material that can be program-generated by current methods; unfortu-
tunately, both the simple question-and-answer and the program-generated approaches
yield interactions that tend to be quite dry and unmotivating. The principal advantage
of author-generated courses is that they can be well written; the author's organization
of the material and style of writing can be powerful motivating factors.

2.1. THE C U R R I C U L U M I N F O R M A T I O N N E T W O R K

In technical subjects, development of skills requires the integration of facts, not just
their memorization. The organization of instructional material is crucial for effective
instruction in these areas. As the curriculum becomes more complex, involving the
interrelations of many facts, the author's ability to present it in a format that facilitates
assimilation and integration becomes more important. At the same time, using counters
to keep track of the student's progress through the curriculum provides a less adequate
model of his acquisition of knowledge.

The Curriculum Information Network is intended to provide the instructional program
with an explicit knowledge of the structure of an author-written curriculum. It contains
the interrelations between the problems which the author would have used implicitly
in determining his "branching" schemes. It allows meaningful modelling of the student's
progress along the lines of his developing skills, not just his history of right and wrong
responses, without sacrificing the motivational advantages of human organization of the
curriculum material. For example, in the BIP course, the CIN consists of a complete
description of each of 100 programming problems in terms of the skills developed in
solving the problems. Thus the instructional program can monitor the student's progress
on these skills, and choose the next task with an appropriate group of new skills. The
CIN introduces an intermediate step between recording the student's history and select-
ing his next problem: the network becomes a model of the student's state of knowledge,
since it has an estimate of his ability in the relevant skills, not just his performance on
the problems he has completed. Branching decisions are based on this model instead of

572 A. BAR_R, M. BEARD AND R. C. ATKINSON

being determined simply by the student's success-failure history on the problems he has
completed.

In this way, a problem can be presented for different purposes to students with different
histories. The flexibility of the curriculum is, of course, increased as a result. More
importantly, the individual problems in the curriculum can be more natural and mean-
ingful; they do not necessarily involve only one skill or technique. In frame-type presen-
tations the one-dimensionality of the problems has a constricting effect. In essence, the
network as implemented in BIP is a method of describing a "'real" curriculum in terms
of the specific skills that can be identified as a student's problem areas.

The next section describes BIP's implementation of the Curriculum Information
Network and the algorithms that use it to select problems for students in an individual-
ized manner.

3. Individualized task selection using the network
Computer-assisted instruction has long promised to present an individualized sequence
of curriculum material, but in many cases this has meant only that "fast" students are
allowed to detour around blocks of curriculum, or that "slow" students are given sets
of remedial exercises. By describing the curriculum in terms of the skills on which the
student should demonstrate competence, and by selecting tasks on the basis of individual
achievement and/or difficulties, we intend to provide each student with programming
tasks that are both challenging and instructive. Furthermore, the structure used in BIP
can be applied to many other subject areas (such as statistics, algebra or reading) that
involve identifiable skills and that require the student to apply those skills in different
contexts and combinations.

We describe the curriculum as a set of goals, ordered by a tree hierarchy. In a subject
that deals primarily with the formulation and solution of problems, as opposed to the
absorption of factual information, a curriculum goal is to be interpreted as the mastery
of a particular problem-solving technique specific to the subject matter. The desired end
result, then, is the achievement of one or more top-level goals, each of which depends on
one or more prerequisite goals. Each goal will be described in the program in terms
of the acquisition of a set of skills, and the problems, or curriculum elements, are
described in terms of the skills that must be applied to solve them. A skill may be devel-
oped in more than one goal, and will most certainly be used in several problems.

In BIP, curriculum goals involve the mastery of certain programming techniques. The
techniques we have chosen include: simple output, using hand-made loops, using
subroutines, etc. We have chosen for the purposes of our current research a very simple
case of the full tree structure for goals. The techniques are linked in a linear order, each
having but one "prerequisite", based on dependence and increasing program com-
plexity. Other structures are attractive, but our current research deals primarily with
individualizing the sequence of presentation of problems, once the curriculum structure
has been specified in the CIN.

The techniques are interpreted as sets of skills, which are very specific curriculum
elements like "printing a literal string" or "using a counter variable in a loop". The
skills are not themselves hierarchically ordered. Appendix 1 is a list of the techniques
and the skills they contain. The programming problems, or "tasks" are described in
terms of the skills they use, and are selected on the basis of this description, relative to

STANFORD BIP PROJECT 573

the student's history of competence on each skill. Figure 2 shows a simplified portion of
the curriculum network, and demonstrates the relationship among the tasks, skills,
and techniques.

Essential among the curriculum elements that describe each task are its text, its skills,
and its model solution. These elements, we feel, are also fundamental to the description
of problems in many technical curriculums, and are broadly applicable in areas unrelated
to instruction in programming. The optional elements in the task description are also
useful categories in other subject areas, with modifications specifically suited to the
given curriculum.

SKILLS

TASKS

TECHNIQUES OUTPUT 1 I - ~ - M ~ J I SINGLE I
SINGLE / I V A R i ~ S I I VARIABLE I

I vAL° S INPUTI

t str ng I I strir

Write a program that Write a program that
Write a program that uses INPUT to get a first assigns the value
prints the string string from the user 6 to the variable N,
'I-IORSE" and assign it to the then prints the value

variable W$. Print W$. of N.

TAS K HORSE TAS K STR I NG 1 N TAS K LETNUMBER

FIo. 2. A simplified portion of the curriculum network.

Computer programming, like many other procedural subjects, is better learned through
experience than through direct instruction, especially if that experience can be paced at
a speed suited to the individual student. Throughout the BIP course, the primary empha-
sis is placed on the solution of programming "tasks". BIP does not present a sequence
of instructional statements followed by questions. Instead, a problem is described and
the student is expected to write his own BASIC program to solve it. As he develops his
BASXC program for each task, the student is directed to appropriate sections of the
student manual for full explanations of BASIC statements, programming structures, etc.
He is also encouraged to use the numerous student-oriented features, such as an inter-
active debugging facility and various "help" options described in Section 4.

When a student enters the course he finds himself in task "GREENFLAG", which
requires a tyro-line program solution. Because this is expected to be his first programming
experience, and perhaps his first interaction of any kind with a computer, he is led
through the solution to the task in very small steps. GREENFLAG is the only task in
the curriculum that presents text, asks questions, and expects the student to type
"answers", which alleviates the trauma of being told to write a program in his first
session. However, since the student's "answers" are frequently commands that are

574 A. BARR, M. BEARD AND R. C. ATKINSON

passed to BIP's interpreter, he can see the genuine effects of his input, and he emerges
from G R E E N F L A G having written a genuine program.

Figure 3 shows all the curriculum elements, including the skills, that describe each
task. The text states the requirements of the task to the student, and suggests any pre-
requisite reading in the BIP student manual. The hints present additional information
at the student's request, and subtasks isolate a part of the "main" problem as a smaller
programming problem which he is to solve, helping him reduce the main task to separ-
ately soluble parts. The skills are the specific programming elements required in the
solution. The model solution is a BASIC program that solves the problem presented in

Task Which
"Must Follow"

Skills Developed "Sub Tasks"

"Disabled" Basic
Problem Text ~.~ TA S K -~ Operators

REPand Hints Basic Operators
Required in Solution

Model Solution
with Test Data

FIG. 3. Elements that describe a task.

the task, and is accessible to the student if he cannot reach his own solution. The model
also contains coded test input data that is used to compare the results produced by the
student's program against those of the model. The "must follow" tasks (if any) will
follow the main task automatically, and require extensions of the student's original
solution. The "required operators" are BASIC primitives that must be included in the
student's program before he is allowed to progress out of the current task; the "disabled
operators" are those primitives that, for pedagogical reasons, are not to be used in
his solution program.

The sequence of events that occur as the student works on a task is shown in Fig. 4.
When he has finislaed the task by successfully running his program, the student proceeds
by requesting "MORE" . His progress is evaluated after each task. In the "Post Task
Interview" he is asked to indicate whether or not he needs more work on the skills
required by the task, which are listed separately for him.

As soon as the student completes GREENFLAG, therefore, the instructional pro-
gram knows something about his own estimation of his abilities. In addition, for all
future tasks his solution is evaluated (by means of comparing its output with that of the
model solution run on the same test data) and the results are stored with each skill
required by the task. The program then has two measures of the student's progress in
each skill: his self-evaluation and its own comparison-test results.

After completing a task (he may of course leave a task without completing it) the
student is free either to request another, or to work on some programming project of

STANFORD BIP PROJECT 575

his own. The algorithm by which BIP selects a next task, if the student requests it, is
shown in Fig. 5. The selection process begins with the lowest (least complex) technique.
All the skills in that technique are put into a set called MAY, which will become the set
of skills that the next task "may" use.

Student
program
'falls"

Select and present
task.

i
Student writes program to solve the problem.

- BASIC interpreter, ERR DOKTOR

- Hints

- S ubtasks

- DEMO: observe execution of model solution

- MODEL: see listing of model solution after
all other aids exhausted

- References to B IP student manual

Student runs program successfully.
Ready to continue, types MORE

Compare student program to model
solution. Update student history

Student "succeeds" program

I Post task Interview. Obtain]
self-evaluation, update
student history

FIG. 4. W o r k i n g t h r o u g h a task.

The program then examines the student's history on each of the skills associated with
the technique, to see if it needs further work. This criterion judgment is the heart of the
task selection algorithm, and we have modified it often. Two key counters in the history
are associated with each skill. One is based on the results of the solution checker (des-
cribed in section 4), and monitors the student's continuing success in using the skill.
The other is .based on his self-evaluation, and monitors his own continuing confidence
in the skill. The current definition of a "needs work" skill is one on which either counter
is zero, indicating that the student was unable to pass the solution checker the last time
that skill was required in a task, or that he requested more work on the skill the last
time he used it. Any such not yet mastered skills are put into the MUST set. Eventually
BIP will seek to find a task that uses some of these "must" skills.

I f no such skills are found (indicating that the student has mastered all the skills at
that technique level), the search process moves up by one technique, adding all its skills
to the MAY set, then seeking MUST skills again. Once a MUST set is generated, the
search terminates, and all of the tasks are examined. Those Considered as a possible
next task for the student must (a) require at least one of the MUST skills, and (b) require
no skills outside of the MAY set. Finally, the task in this group that requires the largest
number of MUST skills is presented as the next task. Thus, in the simplified scheme,

576 A. BARR, M. BEARD AND R. C. ATKINSON

shown in Fig. 2, assuming that the student had not yet met the criterion on the skills
shown, the first task to be presented would be HORSE, because its skill lies in the earliest
technique, and would constitute the first MUST set. Task LETNUMBER would be
presented next, since its skills come from the next higher technique; STRINGIN would
be presented last of these three.

Student requests
TASK

Start at lowest technique
/

Add all skills from
current technique
to MAY set

Put skills that
NEEDWORK in MUST set @oo

find those 1 Examine tasks=
wlth some MUST skills, no t

[.skills outside of MAY /

Found HOLE In
no ~ curriculum. Send

message to f e.

yes

l Present the taskwith]
the greatest number of
MUST skills

FzG. 5. Selecting the next task.

I Move to next I
higher
technique

I yes

I Stude
compl,
currlq

, , t h-,]
lateq |
iculum /

An interesting curriculum development technique has evolved naturally in this scheme.
If BIP has selected the MUST and MAY sets, but cannot find a task that meets the
above requirements, then it has found a "hole" in the curriculum. After sending a message
to the course authors describing the nature of the missing task (i.e. the MUST and
MAY skills), the task selection procedure examines the next higher technique. It gener-
ates new, expanded MUST and MAY sets, and searches for an appropriate task. Again,
if none is found, a new search begins, based on larger MUST and MAY sets. The only
situation in which this process finally fails to select a task occurs when the student has
covered all of the curriculum.

Our work for the coming year will concentrate on student models that involve more
than counter-type criterion judgments on the skills to be developed. We will attempt
to characterize students' knowledge states and "difficulty" states explicitly by analyzing
protocols. If we are successful, a production system type of student model (Newell,
1973) can be used to guide the student through the curriculum material.

STANFORD BIP PROJECT 577

4. BIP'S interpreter: a tutorial laboratory

Most of BIP's specially designed features are described by Barr et al. (1975). Since the
publication of that report, a number of significant improvements have been made to
existing structures, and a major graphic instructional feature has been added. The
purpose of this section is to present the motivation for these modifications and to
describe their operation. Table 1 lists the BIP commands available to the student grouped
by their functions, as an overview of the system.

TABLE 1

BIP' s student commands

Information
Who (is at this terminal)
What (task am I doing)
When (is it now)
Gripe (to Stanford)
Calculator
Hardcopy

Instruction
Task
More
Reset (exit all tasks)
Enough (exit current task)

Problem solving aids Debugging aids
Rep Flow
Hint Trace
Subtask
Demo
Model

Interpreter commands File system
Run Files (to see directory)
Scratch Save
Sequence (renumber lines) Get
List Merge
Edit (a line) Kill

4.1. IMPROVED ERROR CORRECTION IN THE INTERPRETER

Because the BIP course is aimed at students with no previous programming experience,
the error messages are designed to contain more information than those supplied by
"standard" BASIC systems, and they are carefully worded in non-computer-oriented
terms to minimize confusion.

In many cases, these expanded error messages appear to provide enough information
to help students correct their errors. However, especially in the case of the more naive
students, the generality of this error correction system proves to be a drawback. Conse-
quently, the interpreter was substantially modified to provide more specific information
about the particular error the student has made, primarily by identifying the place in
his own line or program at which BIP detected the error.

For the student learning his first programming language the mechanical intolerance
of the computer is often bewildering and frustrating. The slightest spelling mistake will
cause the computer to behave in an unexpected way. A statement that seems clear to the

~78 A. BAR_R, M. BEARD ~kND R. C. ATKINSON

student may be much less obvious to the computer, and often for an obscure reason.
One beginner, after successfully entering the line

10 PRINT X

into her program to print out the answer, could not understand why the improvement

10 PRINT THE ANSWER IS X

did not work as she had expected. Even more frustrating is the incomprehensibility
of the computer's attempts at communication and clarification. Error messages are
frequently confusing or even misleading to the novice. The error message

INVALID VARIABLE NAME

may be triggered by an extra comma or extra quotation mark in the student's line, rather
than by a genuine error with a variable name.

Even a naive user is quick to realize that a computer is not intelligent. Consider the
following exchange in which a student was trying to erase her working program:

*SCRATCH
"SCRATCH" IS NOT A VALID BIP COMMAND.

*WHAT IS A VALID BIP COMMAND 9.
"WHAT IS A VALID BIP COMMAND?" IS NOT A VALID BIP
COMMAND.

Originally, BIP produced this kind of conversational but absurd response, which provides
little useful information. The student begins to distrust error messages like this because
the interpreter makes such obviously stupid mistakes, while pretending to produce
intelligent natural language. Currently, BIP handles the student's input in a more direct
and "honest" way, as illustrated in the sample dialogue in section 5, with appropriately
modest messages like "YOUR PROGRAM DOESN'T SEEM TO SOLVE THE
PROBLEM", and "ERROR FOUND N E A R . . . " The student is not misled as to
BIP's capabilities, and is thus encouraged to look around the error indication to find
the error itself.

Another difficulty common to new students is an inadequate or inaccurate conception
of what the execution of their program entails. In most systems, variable assigflments,
logical decisions, and program branching are all invisible to the user, and there is no
way that the student can conveniently see the flow of execution of his program. Since
learning to debug is a very important part of learning to program, interactive graphic
debugging systems are useful tools that can greatly assist the student's conceptualization
of program execution. BIP makes available two such facilities, which have proved to
be very useful both to students and to more experienced programmers. (These debugging
facilities are described later in this section.)

In BIP's BAsIC interpreter we have attempted to deal with the problems inherent in
student--computer communications. Since BIP runs in an interactive environment, the
student receives immediate feedback about his syntax errors, and information about
other errors as soon as they are detected, keeping him from going too far down the
wrong track without some warning. BIP's interpreter is built right into the instructional
program so that the instructional system can continue to offer assistance after the first
error message is given by the interpreter.

STANFORD BIP PROJECT 579

BIP's error detection capabilities cover four different kinds of program errors: syntax
and execution time errors, program structure errors detectable before execution but
involving more than the syntax of one line, and errors related to the curriculum task
assigned making an otherwise correct program an unacceptable solution to the problem.
Although it is not always possible to give an appropriate syntax error message (syntacti-
cally wrong statements are by their very nature ambiguous), we have tried to make
BIP's error messages as accurate as possible. In addition, we have added clarifying
messages for each error, including examples of correct and incorrect statements, which
the student receives u p o n request. He may also ask for a reference to the part of the
BIP manual that explains in detail the statement he is trying to use. We are currently
designing a problem-dependent error message scheme that will elaborate on errors
involving certain skills introduced in a given problem.

BIP uses a top-down parser to produce an internal code that can be efficiently executed.
The parser is used to detect syntax errors as well. In addition to normal error checking,
the parser specifically looks for certain very common errors. For example, if the student
types:

10 IF J = 0 T H E N G O TO 50

an error message informs him that GOTO's are not allowed in IF statements. But rather
than merely inform the student that his statement was incorrect, BIP pinpoints the
student's error:

10 IF J = 0 T H E N GO TO 50

SYNTAX ERR OR : " G O T O " IN IF STATEMENT
LINE NOT ACCEPTED (TYPE ? FOR HELP)

A flashing arrow indicates the point at which the parser detected the error. Although the
error message tells the student what is Wrong, it does not tell him how to construct-a
correct IF statement. To get more information he types a question mark, and sees:

D O N ' T USE A " G O T O " I N AN " I F " STATEMENT. IT 'S NOT L E G A L T H E R E
TYPE ? FOR M O R E HELP

Alternatively, the student may type ?REF for a reference to the section in the BIP manual
containing a detailed explanation of IF statements.

Similar information is available following an execution error. For example, if the
student ran the following program:

10 D I M L (10)
20 FOR N = 1 TO 11
30 L(N) ---- 0
40 NEXT N
99 E N D

he would receive a runtime error:

E X E C U T I O N E R R O R : LINE 30
I N D E X FOR SUBSCRIPTED (LIST) VARIABLE OUT OF D E C L A R E D

BOUNDS
SUBSCRIPT OF L IS 11

580 A. BARR, M. BEARD AND R. C. ATKINSON

A question mark would elicit additional information:
FOR EXAMPLE,

10 DIM X(20)
20J =25
30 X (J) = 0

IS INCORRECT, BECAUSE 25 IS GREATER THAN THE DIMENSION OF X

In addition to syntax and execution time errors, there are some program structure
illegalities that can be detected before execution. (Strictly speaking, these are syntax
errors, but they involve more than one line of code and are not handled well by BAsic
interpreters.) We have found that identifying these structural bugs, rather than letting
them eventually appear as execution errors, can often clarify the error for the student.
The ERROR DOCTOR routine is called by the RUN procedure, and examines the
program before attempting execution. It notifies the student of errors like branches to
non-existent lines, branches from a line to itself, illegally nested FOR..NEXT loops,
and improper minsfers into and out of subroutines.

Since the BIP course runs without human graders, a simple "solution checker" is
built in to determine whether the student's program is a solution to the problem he was
to solve. The checker runs the stored model solution and compares its output to the
output of the student's program. While this approach does not catch all possible bugs,
it is the method used by most human instructors in grading programming assignments;
it is quick and sufficient.

The solution checker executes the model solution invisibly, storing its output, then
executes the student's program in the same way. Each time the student's program
produces output, it is compared to the list stored from the execution of the model, and
any matching element in that list is flagged. If any unflagged output remains in the list
when execution is completed, the student is told that his program "doesn't seem to
solve the problem". If all outputs of the model have been matched, he is told that his
program "looks O.K.".

Because many of BIP's tasks require interactive programs that deal with a hypothetical
user, the solution checker must be able to perform its comparison-by-execution on
suitable test values, those that might be given by the user in response to an INPUT
statement in the program. These values are stored with the model solution as part of
the curriculum, and are chosen to provide a test of the student's program appropriate
to the level of difficulty of the task and to the explicit requirements stated in its
text.

When BIP executes the student's program, it asks him to provide the names of the
variables he used for the INPUT functions required; an example might be "What variable
do you use for the user's first number?" (The description of the variable's function is
also stored in the model, as a REM statement that gives information but does not affect
execution in any way.) Then the solution checker assigns the test values to the student's
own variables, allowing it to execute his program on exactly the same input as was used
in executing the model. If the student's program is found to be inadequate, he is advised
to run the DEMO to see the model in action. For interactive programs, the test data
are suggested as appropriate input to a DEMO, where the student can see the execution
of the model solution with those values. Frequently, the student's program will fail to
deal with the test values, and the failure is evident from the correct example provided

STANFORD BIP PROJECT 581

by the DEMO. In these cases, the solution checker gives instructive help in just those
areas that cannot be identified by the other error detection facilities.

The solution checker ignores output of string constants, since they are frequently
optional messages oriented toward the hypothetical user of the student's program, and
rarely affect the real correctness of the program. Extraneous output (i.e. output beyond
that produced by the model) is also ignored, for much the same reasons. However, in
those tasks where string constants of "extra" output are considered relevant to the
correctness of the program, the focus of the solution checker can be explicitly narrowed
by additional information coded and stored along with the test values.

Though simple and obviously limited in some ways, BIP's solution checker is an
effective tool, not only in acting as a grader that governs progress through the curriculum,
but also as an additional source of instructive information. Particularly in the more
demanding interactive tasks, the values used by the checker and suggested to the student
add to the beneficial learning effects of hands-on experience and manipulation of his
own BASIC programs.

4.2. INTERACTIVE GRAPHICS FEATURES

In addition to the instructive capabilities built into the interpreter, BIP offers two
facilities that use the CRT display screen as a dynamic source of information. The REP
command presents a flowchart-like representation of the model solution for each prob-
lem, which can be probed by the student to reveal more information about the model's
programming structure. The FLOW command is a debugging aid that allows the
student to execute his own program a line at a time, and makes each step of the execution
fully visible.

Several types of "help" information are stored with each task as part of the curriculum
network. Here we describe REP, the graphic problem solving aid, in some detail, using
a specific example from the curriculum. The requirements of the sample task are:

TASK SLANT: WRITE A PROGRAM THAT USES ONLY ONE PRINT STATE-
MENT AND PRINTS THIS PATTERN. IT SHOULD PRINT AS MANY @
SIGNS AS THE USER REQUESTS.
@

@
@

@
@

@
@

@
The solution is short but the task is difficult:
5 PRINT "HOW MANY @ SIGNS WOULD YOU LIKE?"
10 INPUT N
20 S$ = '" '
30 FOR I = 1 TO N
40 PRINT S$ & "@"
50 s$ = s$ &

60 NEXT I
99 END

582 A. BAR.R, M. BEARD AND R. C. ATKINSON

The critical points of the task are that the variable S$ must be initialized to the null
string, the P R I N T statement must concatenate the accumulated spaces to the " @ "
character, and S$ mus tbe reassigned correctly (a space appended to the string) within
the loop.

Plate 1 illustrates the information available to the student via REP. The figure
shows the initial REP display and two responses to the student's request for more infor-
mation on the loop structure labeled "E".

In using REP the student is allowed to probe the representation in both breadth and
depth and in any sequence. If he probes in the breadth dimension he may first look at
control structure information and find that the program requires a loop. Next he may
look at INPUT/OUTPUT or other key information. Thus, once he has established that
the program require s a loop, more information might be requested on control structure
until, finally, he is shown the actual BAsIc code. The implementation of REP allows u s
to experiment with various aspects of its operation; flags can be set to control which
labels will blink, how much information will be displayed whether or not REP itself
is available to a given student, etc. We are ¢urrently using data from experiments that
tested the use of REP to determine a way to use the student's probes to update BIP's
model of what he understands more accurately.

We have implemented two tracing facilities to assist the student in conceptualizing
the execution of his program. Tracing a program is difficult to do correctly by hand,
since one tends to make the same mistakes over and over. It is especially difficult for
beginning programmers, who may not understand the function of some statements.
BIP's TRACE option automates this process. It allows the student to see exactly how
his program is executing, and to identify the point at which the program begins to stray
from what he intended. As each line of his program executes, the line number is dis-
played on his teletype Or display terminal. Any variable assignments performed in that
line are also indicated, as well as any input or output.

FLOW is a more sophisticated program tracing aid designed for CRT displays. The
main program is displayed on the terminal, with the text of all subroutir/es removed.
Each time the student presses the CR key, one line of his program is executed, and its
line number blinks on the screen display. When an IF or GOTO statement is executed,
an arrow is drawn on the screen to indicate the transfer of control When a subroutine
is called, the main program display is replaced by the lines that make up the subroutine.
Additionally, a message in the corner of the screen indicates the level of
nested subroutines.

The student may also request that up to six variables be traced. If an array is traced,
the value of the most recently assigned array element is shown. In addit{on to the vari-
ables to be traced, a line number may be specified. The program will execute continuously
without waiting for the student to press the key, until the specified line is reached. At
that point, the program will resume step-by-step execution. This feature allows the
student to reach the troublesome part of his program quickly.

Plate 2 illustrates a hypothetical FLOW through a program written for the SLANT
task. The cursor and flashing line numbers show the line that is being executed, the
values of the variables I and N are shown at the top of the screen, and input and output
appear below the program listing. The different states illustrated in the figure show (1)
assignment by INPUT, (2) output, (3) reassignment of the index and reiteration of the

STANFORD BIP PROJECT 583

loop after the NEXT, and (4) reassignment and continuation after the index has passed
the terminating condition.

5. An annotated dialogue
BIP is a programming laboratory. It presents an individually sequenced set of problems
that the student is to solve by writing BAsIc programs. Typically, the tasks present very
little instruction in the syntax of BASIC; a manual describing the language and the BIP
system is provided for reference and detailed information. The task shown here is
clearly not one of the first that the student would see, since it requires some skill both in
planning the program's structure and in using appropriate BAsic constructs to carry
out the job.

The student/BIP interaction is shown on the left, with all student input preceded by
an asterisk. The dialogue begins as the student signs on to the system. Our explanatory
annotation is indented to the right.

WELCOME TO BIP !!
TYPE "?" FOR HELP

Some sort of assistance is always available. If the student types a question
mark, BIP's response is related to the most recent error, as will be seen below.
When the student requests a problem, BIP examines his history and tries to
select an appropriate one.

*TASK
BEGIN TASK: XMAS
ON THE FIRST DAY O F CHRISTMAS, SOMEONE'S TRUE LOVE SENT
HIM/HER A PARTRIDGE IN A PEAR TREE (ONE GIFT ON THE FIRST DAY).
ON THE SECOND DAY, THE TRUE LOVE SENT TWO TURTLE DOVES IN
ADDITION TO ANOTHER PARTRIDGE (THREE GIFTS ON THE SECOND
DAY). THIS CONTINUED THROUGH THE 12TH DAY, WHEN THE TRUE
LOVE SENT 12 LORDS, 11 LADIES, 10 DRUMMERS . . . ALL THE WAY TO
YET ANOTHER PARTRIDGE.
WRITE A PROGRAM THAT COMPUTES AND PRINTS THE NUMBER OF
GIFTS SENT ON THAT TWELFTH DAY. (THIS IS NOT THE SAME AS THE
TOTAL NUMBER OF GIFTS SENT THROUGHOUT ALL 12 DAYS--JUST THE
NUMBER SENT ON THAT SINGLE 12TH DAY.)

This is a fairly difficult problem for most students, and seveial problem-solving
aids are available. In the previous section we discussed the REP feature which
helps students break down problems with flowcharts.

Additional text material is also available, either as a clarification of the task
itself or, as in this case, to help the student construct his own algorithm.

*HINT
HINT # 1
THIS PROGRAM REQUIRES A LOOP. EACH EXECUTION OF THE LOOP
INVOLVES ACCUMULATING THE VALUE OF THE INDEX INTO A TOTAL.

t~

(facing p. 582)

©

584 A. BARR, M. BEARD AND R. C. ATKINSON

*HINT
HINT #2
FINDING A TOTAL OR SUM ALMOST ALWAYS MEANS TWO THINGS:
1. SETTING A VARIABLE EQUAL TO ZERO OUTSIDE A LOOP.
2. ACCUMULATING VALUES INTO THAT VARIABLE WITHIN THE LOOP.
IN WORDS, TOTAL EQUALS OLD TOTAL PLUS ANOTHER VALUE.

In some cases, the task involves a number of complications, some of which can
be isolated and presented as smaller "subtasks". This subtask directs the stu-
dent's attention to the problem of writing a simple loop using a FOR..NEXT
statement. The student always has the option of completing the subtask, or
of returning to the "main" task as soon as he has gained the information he
thinks he needs to solve the original problem.

*SUB
BEGIN TASK: S: FORLOOP
WRITE A PROGRAM WITH A LITTLE -FOR. .NEXT- LOOP.

THE WORK OF THE LOOP IS JUST TO PRINT THE VALUE OF THE LOOP'S
INDEX (THE VARIABLE THAT KEEPS TRACK OF THE NUMBER OF TIMES
THE LOOP HAS BEEN EXECUTED).

WHEN YOU RUN THE PROGRAM, IT SHOULD LOOK LIKE IT IS COUNTING
FROM 1 TO 10.

The subtask is treated as a regular task by BIP, and can have hints and subtasks
of its own. Here the student makes several attempts at a solution, illustrating
the error detection facilities.

First, although the problem specifically required a FOR. .NEXT loop, the
student will try to construct a "hand-made" loop of his own.

,*10 LET I = 1

*20 PRINT "THE INDEX IS; I
t

SYNTAX ERROR: UNMATCHED QUOTE MARKS--FOUND NEAR '"THE
INDEX IS' LINE NOT ACCEPTED (TYPE ? FOR HELP)

BIP's interpreter was specially written to provide as much instruction and
error correction as possible, in contrast to "standard" BASIC systems. Here
the student has made a common error by omitting the closing quote marks in
his PRINT statement. BIP is able to indicate the point at which it detected
the error, and to give further information specifically related to this
particular incorrect BASic statement:

*?

' "THE INDEX IS' HAS AN ODD NUMBER OF QUOTE MARKS
REMEMBER THAT ALL STRINGS MUST HAVE A QUOTE
BEGINNING AND END

AT THE

TYPE ? FOR MORE HELP

STANFORD BIP PROJECT 585

* ?REF
II.7, II.8

BIP can always present an appropriate manual reference for all errors.
This student gives up the fancy PRINT statement and includes a simpler

but adequate one. Unfortunately he is soon to find that his loop construction
is unacceptable for this task:

*20 PRINT I

*30 IF I = 9 T H E N 99
FOR THE PURPOSES OF THIS TASK, D O N ' T USE TH E 'IF' STATEMENT.

His original plan for a loop including a conditional branch will have to be
abandoned. Undaunted, the student now tries to solve the problem without
a loop. He first deletes the lines he has entered so far.

*SCR

*10 PRINT 1

*20 PRINT 2

*30 PRINT 3

After entering all of the PRINT statements, he lists his program, and then
runs it.

*LIST
I0 PRINT 1
20 PRINT 2
30 PRINT 3
40 PRINT 4
50 PRINT 5
60 PRINT 6
70 PRINT 7
80 PRINT 8
90 PRINT 9
99 END

*RUN

EXECUTION OF YOUR PROGRAM

1

2
3
4

586 A. BARR, M. BEARD AND R. C. ATKINSON

5
6
7
8
9
EXECUTION COMPLETED AT LINE 99

The program runs without execution errors. When the student considers his
program to be an adequate solution to the problem posed in the task, he
requests BIP's evaluation of it by typing MORE, indicating that he wants to
proceed to another task. Here, the student seems to be satisfied, and decides
to continue.

*MORE
WAIT. SOMETHING IS MISSING. FOR THIS TASK, YOUR PROGRAM
SHOULD ALSO INCLUDE THE FOLLOWING BASIC STATEMENT(S):

FOR
ADD TO YOUR PROGRAM AND - R U N - IT AGAIN BEFORE YOU TYPE
'MORE'

BIP has recognized that the essential FOR. .NEXT loop is missing from the
student's program, and refuses to evaluate it further. Finally he Sees the light,
deleting his last effort and trying again, this time with a FOR. .NEXT loop.

*SCR
*10 FOR I = 1 TO 9
*20 PRINT I
*99 END

This three-line program is of course syntactically incorrect, as there is an open
loop. BIP has a routine called ERROR DOCTOR which checks the structure
of complete programs before they are run, so that such errors do not appear
as less informative execution time errors.

*RUN
ERROR DOCTOR DIAGNOSIS: 'FOR' STATEMENT WITHOUT MATCHING
'NEXT'

LOOK AT LINE NUMBER: 10
TYPE 9. FOR HELP

As always, more help is available after the original error message.
*9.

YOU ARE MISSING THE -NEXT- STATEMENT CORRESPONDING TO THE
-FOR- ON THIS LINE

TYPE ? FOR MORE HELP

After listing his program, the student sees and corrects the loop error, and the
program executes successfully.

STANFORD BIP PROJECT 587

*LIST
10 FOR I---- 1 TO 9
20 PRINT I
99 END

*30 NEXT I

*RUN
EXECUTION OF YOUR PROGRAM
1
2
3
4
5
6
7
8
9
EXECUTION COMPLETED AT LINE 99

Again, the student is ready for MORE. BIP evaluates his solution by invisibly
executing both the model solution and his program on the same "test" data,
then comparing their output. In this case, the model produced output different
from that of the student's program, so he is told that his program doesn't
seem correct. He elects to remain in the task to try again.

*MORE

EXECUTION OF THE MODEL

EXECUTION OF YOUR PROGRAM

YOUR PROGRAM DOENS'T SEEM TO SOLVE THE PROBLEM.

IF YOU ARE COMPLETELY CONFUSED OR LOST, YOU CAN LEAVE THIS
TASK NOW

DO YOU WANT TO STAY IN THE TASK? TYPE Y OR N: Y

O.K. TRY AGAIN. YOU MIGHT LOOK AT A -DEMO- OF THE MODEL SOLU-
TION AND COMPARE ITS OUTPUT TO THE OUTPUT OF YOUR PROGRAM.

Many of BIP's tasks are interactive: the student's program must be able to
ask questions of a hypothetical user, and to deal with the user's input in appro-
priate ways. The DEMO feature allows the student to execute the stored model
solution to see the behavior required of his program. In this task, the demo
serves to remind the student that his program was supposed to count to 10,
not 9.

588 A. BARR, M. BEARD AND R. C. ATKINSON

*DEMO
EXECUTION OF THE MODEL
THE INDEX IS 1
THE INDEX IS 2
THE INDEX IS 3
THE INDEX IS 4
THE INDEX IS 5
THE INDEX IS 6
THE INDEX IS 7
THE INDEX IS 8
THE INDEX IS 9
THE INDEX IS 10
WE ARE NOW OUT OF THE LOOP.
EXECUTION COMPLETED AT LINE 99

DEMO ENDED

And he corrects the first line. BIP reminds the student that the line has been
changed.

*10 FOR I = I TO10
WAS: 10 FOR I ----- 1 TO 9

*RUN
EXECUTION OF YOUR PROGRAM

1
2
3
4
5
6
7
8
9

10
EXECUTION COMPLETED AT LINE 99

Again satisfied, the student asks for MORE.

*MORE

EXECUTION OF THE MODEL

EXECUTION OF YOUR PROGRAM

LOOKS O.K.

Following the successful comparison, BIP presents the "post-task interview,"
in which the student's own evaluation of his understanding and skills is acquired
and stored.

STANFORD BIP PROJECT 589

First the model solution is displayed, and the student is asked whether or
not he understands how it works.

POST TASK INTERVIEW

HERE IS A TYPICAL SOLUTION TO THIS TASK:
1 0 F O R I = 1 T O 1 0
20 PRINT "THE INDEX IS "; I
30 NEXT I
40 PRINT "WE ARE NOW OUT OF THE LOOP."
99 END

DO YOU UNDERSTAND THE SOLUTION ? (Y/N): Y

Then, for each of the specific skills required in the construction of the program
for this task, the student is asked to indicate whether or not he feels confident in
his use of that skill. These questions are a major source of information for
BIP's task selection process, by which the next task will be chosen at a level
appropriate for this student. Those skills to which the student responds "Y"
will not be sought in his next task, since he feels that he has had enough work
on them. Those to which he responds "N", on the other hand, will be looked
for explicitly. Unless he has exhausted a portion of the curriculum, some of
those "N" skills will be required in his next task, providing him with the
opportunity to use those skills again in a new context.

THINK ABOUT THE SKILLS USED IN THIS TASK. FOR EACH SKILL,
TYPE Y IF YOU HAVE HAD ENOUGH WORK WITH THAT SKILL.
TYPE N IF YOU THINK YOU NEED MORE WORK ON IT.

FOR. .NEXT LQOPS WITH LITERAL AS FINAL VALUE OF INDEX: Y
MULTIPLE PRINT [STRING LITERAL, NUMERIC VARIABLE]: N

Since he did not use the "multiple print" statement shown in line 20 of the
model, our student indicates that that skill would be appropriate in his next
problem.

BIP informs him that he has returned to the larger task at hand, and allows
him to have its text re-displayed.

RETURNING FROM A SUB TASK.
YOU ARE IN TASK XMAS.
DO YOU WANT THE TEXT PRINTED OUT ? TYPE Y OR N.

*N

6. An experiment evaluating BIP's individualization scheme
An experiment comparing the effectiveness of BIP's teaching strategy with a more
traditional "branching" strategy was run in February and March, 1975. BIP's task
selection strategy is described in detail in section 3. The control group followed a

590 A. BARR, M. BEARD AND R. C. ATKINSON

predetermined branching strategy through the curriculum arrived at as follows: a com-
mittee of staff members with experience both in curriculum design and in teaching pro-
gramming ordered the tasks by complexity and the inherent hierarchy of programming
concepts required for their solution. For each task, two "next" tasks were specified,
one to be presented if the student successfully solved the current task without seeing the
model solution, and the other to be presented if he failed. All of the existing BIP tasks
were incorporated into this fixed path, as either "main line" or remedial problems.

Forty-two Stanford students, 22 men and 20 women, were recruited as subjects for
the experiment. All were given the Computer Programming Aptitude Battery (1964) as
a pretest. Two matched groups, each with 11 men and 10 women, were created by ranking
the subjects' pretest scores and alternately assigning subjects to groups.

Subjects worked at CRT terminals for 10 one-hour sessions, signing up for each hour
one or two days in advance. Of the original 42 subjects who took the pretest, one woman
failed to begin work on the course; the other 41 all completed the 10 hours' work within
three weeks and then took an off-line post-test.

The strategy for selecting the "next task" was the only difference in treatment between
the groups. Since this process was invisible to the students, their interactions with BIP
appeared identical. They had access to all of the interpreter and assistance features, and
both groups were given the post-task interview after each task, although the information
collected there was not used in the task selection decisions for the fixed path group.

Extensive data were collected on-line as the subjects worked on the course, including
complete protocols whose analysis we are now attempting to automate for our research
on student models. For purposes of comparing the performance of the two treatment
groups, the information recorded for each task is most interesting. This information
includes:

(a) whether the subject "passed" the solution checker on this task;
(b) whether he passed the checker on his first attempt;
(c) whether he said he understood the model solution in his PTI;
(d) whether he requested and saw the model solution before completing the task.

In addition, a comprehensive post-test was administered off-line. The test was designed
to measure the students' ability to interpret correct BASIC programs, to complete specified
sections of incomplete programs, and to construct entire programs.

An analysis of variance was performed on the task data, measuring the effect of
treatment. The results are summarized in Table 2. The experimental group is labeled
"tsa" since their tasks were selected by BIP's task selection algorithms; the "path"
group followed the predetermined branching strategy through the curriculum. Some
conclusions about these results can be drawn from the analysis completed at this time.
First, there was no significant difference between the groups' post-test scores (means
were 109.0 and 108-2 for the experimental and control groups, respectively) indicating
that the two task selection strategies apparently produced the same amount of learning
of the material tested. However, the data in Table 2 show a significant difference in the
character of that learning experience. During their ten contact hours, students in the
experimental group worked 25~ more problems than those who followed the predeter-
mined problem sequence, and had significantly less trouble working the problems they
were presented, as evidenced by the higher percentage they completed correctly and said
they understood in the post-task interview. It should be stressed that the two groups

STANFORD BIP PROJECT 591

saw the same problems, but in a different sequence. Neither the evaluation forms filled
out after each task nor their post-test scores indicated that they were getting problems
that were too easy. We believe that these results show that BIP's task selection algorithm
did indeed choose appropriate problems for each student on the basis of a running
history, and that the net effect, although it fell short of increasing learning speed in
this situation, was a significant improvement over the branching strategy devised by
our experts.

TABLE 2
Mean performance of experimental (tsa) and

control (path) subjects

Mean
Diff F

tsa path

Total number of tasks seen 37-7 29.4 8.3 21.92**
~o passed solution checker 90.7 82.3 8"4 6.32*
~o passed checker the first time 73-0 62.3 10.7 7.41"
~o "understood" in pti 91.1 83-2 7"9 6.68*
~o where model solution was seen 10.8 14.3 4.5 0.85

* F c r i t (1,32) = 4.17, p <0 .05 .
**Fc r i t (1,32) = 5.57, p <0 .01 .

The data collection routines were designed to be nearly exhaustive, recording all
information that we felt might be interesting in some aspect of future work on the
design of task selection strategies, student models, and curriculum description; for this
reason, we feel that much more is yet to be derived from the data than the results we
give here. Still, we are confident that BIP's strategy, by ordering the presentation of tasks
on the basis of its continually updated knowledge of each subject's progress, did change
the character of the interaction between the teaching system and the students.

7. Current goals and plans
It is our goal to improve student performance significantly by tailoring the presentation
of tasks more closely to each student's strengths and weaknesses, and we feel that the
experimental results indicate a positive first step in that direction. Work during the
current year focuses on the three major components of the individualization process:
the curriculum description, the student model, and the task selection algorithm or
strategy. In order for BIP to present a reasonable task, the curriculum must be repre-
sented internally such that BIP can recognize the aspects of each task that qualify it as
appropriate for the student's current level of ability. The description of the student,
similarly, must represent his abilities in a format that makes it possible for BIP to identify
the kind of task that is needed. Finally, the task selection strategy must serve as an
interface between the two descriptions, defining an appropriate task in terms of the
current state of the two data bases. Further analysis of these data is planned, not only
to discern other differences between the two groups. More importantly, we will use the
results in designing new forms of the three components of the individualization scheme.

592 A. BARR, M. BEARD AND R. C. ATKINSON

We are also concerned with the difficulty and cost of running these large scale com-
parative experiments. At least one staff member was absorbed by the logistics of the
February experiment during the recr, dting and pretesting period, three weeks of class-
room interaction with BIP, and the time required for administering post-tests. Consider-
able effort was expended to insure that the routines that controlled the two treatment
groups worked properly, and to insure that the data were collected exactly as planned.
No changes could be made to these routines during the subjects' work with BIP, so it
was necessary (as in any live-subject experiment) to devote about a month to the perfec-
tion of the program. The information collected, while extensive and very useful for a
number of purposes, still relates only to two conditions, only one of which (the " tsa"
group) is of interest for future development.

Still, such comparative studies should be run for each of the many design decisions
made during the development of the student model and task selection algorithms. An
alternative means of generating experimental results is needed, to provide efficient
comparison and evaluation of our designs. We are developing a procedure for obtaining
detailed information about BIP's ability to individualize instruction by simulating large-
scale experiments like this one instead of actually carrying them out. With the simulation
we expect to obtain reasonable data about new student models as they evolve so that future
real-subject experiments focus on more specific evaluations of the task selection process.

The BIP course has recently been made available to the ARPA net community, and
interested users who have access to the net should contact the authors. During the
coming year we will rewrite the entire BIP system in BASIC to make it available on smaller
BASIC systems to those students it was designed to teach.

The main thrust of our work for the coming year will, we hope, be an investigation
of the nature of the students' programming bugs. We think that analysis of the hundreds
of collected protocols of BIP students will be a valuable addition to current AI work on
understanding programming and classifying bugs. Furthermore, with sufficient under-
standing of where a student is likely to err in a given problem, and what misunder-
standing would cause each error, some very impressive improvement will be possible
in the immediate context of BIP.

This research was supported jointly by the Office of Naval Research and the Advanced
Research Projects Agency of the Department of Defense on contract number N00014-67-A-
0012-0054. The authors thank Oliver Buckley, Richard Kahler, Jay Lindsay, and William
Swartout for their contributions to BIP.

References
BARR, A., BEARD, M. & ATKINSON, R. C. (1975). A rationale and description ofa CAI program

to teach the BAsic programming language. Instructional Science, 4, 1-31.
BEARD, M., LORTON, P., SEARLE, B. & ATKINSON, R. C. (1973). Comparison of student perform-

ance and attitude under three lesson-selection strategies in computer-assisted instruction
(Tech. Rep. 222). Stanford, Calif. : Stanford University, Institute for Mathematical Studies
in the Social Sciences.

BROWN, J. S., BURGON, R. R. & BELL, A. (1974). An intelligent CAI system that reasons and
understands (BBN Report 2790). Cambridge, Mass.: Bolt Beranek and Newman.

CARBONELL, J. R. (1970). AI in CAI: An artificial intelligence approach to computer-aided
instruction. IEEE Transactions on Man-Machine Systems, MMS-11, 190-202.

CARBONELL, J. R. • COLLINS, A. M. (1973). Natural semantics in artificial intelligence. In Pro-
ceedings o f the Third International Joint Conference on Artificial Intelligence, Stanford,
Calif., August.

STANFORD BIP PROJECT 593

COLLINS, A. M., PASSAFIUME, J. J., GOULD, L. & CARBONELL, J. R. (1973). Improving interactive
capabilities in computer-assisted instruction (BBN Report 2631). Cambridge, Mass. : Bolt
Beranek and Newman.

DANIELSON, R. & NIEVERGELT, J. (1975). An automatic tutor for introductory programming
students. SIGSCE Bulletin, 7.

DIGITAL EQUIPMENT CORPORATION (1968). Algebraic Interpretive Dialogue. Maynard, Mass. :
Digital Equipment Corporation.

FRIEND, J. (1973). Computer-assisted instruction in programming: A curriculum description
(Tech. Rep. 211). Stanford,. Calif. : Stanford University, Institute for Mathematical Studies
in the Social Sciences.

GOLDBERG, A. (1973). Computer-assisted instruction: The application of theorem-proving to
adaptive response analysis (Tech. Rep. 203). Stanford, Calif. : Stanford University. Institute
for Mathematical Studies in the Social Sciences.

GRIGNETTI, M. C., GOULD, L., HAUSMANN, C. L., BELL, A. G., HARRIS, G. • PASSAFIUME, J.
(1974). Mixed-initiative tutorial system to aid users of the on-line system (NLS) (ESD-TR-
75-58). Bedford, Mass. : Deputy for Command and Management Systems, Electronic
Systems Division.

KOFFMAN, E. B. & BLOUNT, S. E. (1975). Artificial intelligence and automatic programming in
CAI. Artificial Intelligence, 6, 215-234.

LORTON, P. & SLIMICK, J. (1969). Computer-based instruction in computer programming: A
symbol manipulation-list processing approach. Proceedings of the Fall Joint Computer
Conference, pp. 535-544.

NEWELL, A. (1973). Production systems: Models of control structures. In W. G. CHASE, Ed.,
Visual Information Processing. New York: Academic Press.

SANDERS, W., BENBASSAT, G. & SMITH, R. L. (1976). Speech synthesis for computer-assisted
instruction: The MISS system and its applications. SIGSCE Bulletin, 8, 200-211.

SCIENCE RESEARCH ASSOCIATES (1964). Computer Programming Aptitude Battery. Chicago, Ill. :
Science Research Associates.

SEEr, J. A. (1974). Student models in computer-aided instruction. International Journal of Man-
Machine Studies, 6, 261-276.

SMITH, R. L., GRAVES, H., BLAINE, L. H. & MARINOV, V. G. (1975). Computer-assisted axio-
matic mathematics: Informal rigor. In O. LECARME & R. LEWIS Eds., Computers in Education
(IFIP 2nd World Conference). Amsterdam: North Holland.

SUPPES, P., SMITH, R. & BEARD, M. (1975). University-level computer-assisted instruction at
Stanford: 1975 (Tech. Rep. 265). Stanford, Calif. : Stanford University, Institute for Mathe-
matical Studies in the Social Sciences.

VAN LEHN, K. (1973). SAIL users manual (Artificial Intelligence Memo 204). Stanford, Calif. :
Stanford University, Stanford Artificial Intelligence Laboratory.

Appendix 1
BIP's CURRICULUM STRUCTURE

It is a difficult task to determine the fundamental elements of an arbitrary curriculum
and to discern or impose a structure. The detail of description required by BIP's task
selection algorithms seemed impossible to attain, and indeed we have never settled down
to one satisfactory description of the introductory programming curriculum, although
we do feel that we understand it better than we did. We have included in this appendix a
list of most of the basic skills we have identified, grouped by the subgoals or "techniques"
they first appear in. Some skills, like "the END statement" are not included in the
technique structure because they are not valuable in task selection decisions. Although
this description is neither complete nor final, it certainly represents considerable effort
and should be very valuable to others interested in teaching computer programming or
in curriculum analysis.

594 A. BARR, M. BEARD AND R. C. ATKINSON

Simple output--first programs
print numeric literal
print string literal
print numeric expression [operation on literals]
print string expression [concatenation of literals]

Variables--assignment

pnnt value of numeric variable
print value of string vari~ible
pnnt numeric expression [operation on variables]
print numeric expression [operation on literals and variables]
print string expression [concatenation of variables]
pnnt string expression [concatenation of variable and literal]
assign value to a numeric variable [literal value]
assign value to a string variable [literal value]

More complicated assignment
assign to a string variable [value of an expression]
assign to a numeric variable [value of an expression]
re-assignment of variable (using its own value) [string]
re-assignment of variable (using its own value) [numeric]
assign to numeric variable the value of another variable
assign to string variable the value of another variable

More complicated output
multiple print [string literal, numeric variable]
multiple print [string literal, numeric variable expression]
multiple print [string literal, string variable]
multiple print [string literal, string variable expression]

Interactive.programs--INPUT from user--using DATA

assign numeric variable by -INPUT-
assign string variable by -INPUT-
assign numeric variable by -READ- and -DATA-
assign string variable by -READ- and -DATA-
the -REM- statement

More complicated input

multiple values in -DATA- [all numeric]
multiple
multiple
multiple
multiple
multiple
multiple
multiple
multiple

values in -DATA- [all string]
values in -DATA- [mixed numeric and string]
assignment by -INPUT- [numeric variables]
assignment by -INPUT- [string variables]
assignment by -INPUT- [mixed numeric and string]
assignment by -READ- [numeric variables]
assignment by -READ- [string variables]
assignment by -READ- [mixed numeric and string]

STANFORD BIP PROJECT 595

Branching--program flow

unconditional branch (-GOTO-)
interrupt with ctd-g

Boolean expressions

print boolean expression [relation of string literals]
print boolean expression [relation of numeric literals]
print boolean expression [relation of numeric literal and variable]
print boolean expression [relation of string literal and variable]
boolean operators [-AND-]
boolean operators [-OR-]
boolean operators [-NOT-]

IF statements--conditional branches

conditional branch [compare numeric variable with numeric literal]
conditional branch [compare numeric variable with expression]
conditional branch [compare two numeric variables]
conditional branch [compare string variable with string literal]
conditional branch [compare two string variables]
the -STOP- statement

Hand-made loops--iteration

conditional branch [compare counter with numeric literal]
conditional branch [compare counter with numeric variable]
initialize counter variable with a literal value
initialize counter variable with the value of a variable
increment (add to) the value of a counter variable
decrement (subtract from) the value of a counter variable

Using loops to accumulate

accumulate successive values into numeric variable
accumulate successive values into string variable
calculating complex expressions [numeric literal and variable]
initialize numeric variable (not counter) to literal value
initialize numeric variable (not counter) to value of a variable
initialize string variable to literal value
initialize string variable to value of a variable

BASIC functionals

the - INT- function
the -RND- function
the -SQR- function

FOR..NEXT loops

FOR..NEXT loops with literal as final value of index
FOR..NEXT loops with variable as final value of index
FOR..NEXT loops with positive step size other than 1
FOR..NEXT loops with negative step size

596 A. BARR, M. BEARD AND R. C. ATKINSON

Arrays

assign dement of string array variable by - INPUT-
assign dement of numeric array variable by - INPUT-
assign element of numeric array variable [value is also a variable]
the -DIM- statement
string array using numeric variable as index
print value of an element of a string array variable
numeric array using numeric variable as index
print value of an element of a numeric array variable

Future extensions to the curriculum

nesting loops (one loop inside another)
subroutines (-GOSUB-- and friends)

